Array truncation effects in infrared frequency selective surfaces
نویسندگان
چکیده
منابع مشابه
Array truncation effects in infrared frequency selective surfaces.
A metasurface consisting of an infinite array of square loops was designed for maximal absorptivity for s-polarized light at a wavelength of 10.6 µm and 60 degrees off-normal. We investigate the effects of array truncation in finite arrays of this design using far-field FTIR spectroscopy and scattering scanning near-field optical microscopy. The far-field spectra are observed to blue-shift with...
متن کاملPolarized infrared emission using frequency selective surfaces.
An emission frequency selective surface, or eFSS, is made up of a periodic arrangement of resonant antenna structures above a ground plane. By exploiting the coupling and symmetry properties of an eFSS, it is possible to introduce polarization sensitive thermal emission and, subsequently, coherent emission. Two surfaces are considered: a linearly polarized emission surface and a circularly pola...
متن کاملNew UWB Shielding with Frequency Selective Surfaces
In this paper a Frequency Selective Surface (FSS) as a UWB electromagnetic shield is introduced. The proposed FSS comprises a quasi-J.C-Jerusalem Cross- and a copper ring, which are located at both sides of a FR4 substrate and can represent a S.E -Shielding Effectiveness- better than 20dB in 90% bandwidth of Ultra Wide Band frequency. This structure is compact and thin. Each cell comprises J.C ...
متن کاملFabrication of mid-infrared frequency-selective surfaces by soft lithography.
We describe the fabrication of large areas (4 cm(2)) of metallic structures or aperture elements that have ~100-350-nm linewidths and act as frequency-selective surfaces. These structures are fabricated with a type of soft lithography-near-field contact-mode photolithography-that uses a thin elastomeric mask having topography on its surface and is in conformal contact with a layer of photoresis...
متن کاملRefractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces.
Transmission and reflection characteristics of inductive-mesh frequency-selective surfaces were measured in the 4-12-microm range. Specific issues investigated include the effect of interelement spacing on the location and width of the resonance and the influence of superstrate and substrate refractive indices on the spectral response of the structure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2014
ISSN: 1094-4087
DOI: 10.1364/oe.22.016645